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Abstract

Exploration is a fundamental task in the field of robotics. The goal is to build
a map of a previously unknown environment. Two tasks have to be performed
repeatedly for exploration: mapping the space the robot so far perceived; and
planning where to go next. In this thesis we focus on the first task and the goal
is to find a map representation that can deal with noisy state estimates. All so
far presented map representations either assume perfect state estimates or need
to rebuild the map after optimization.

To achieve this goal we build our representation with polygons. Our polygons
represent the boundary between free known space and occupied space or un-
known space and the inside of polygons is implicitly free space. We develop
two approaches: The first approach builds a global map with polygons by con-
tinuously building the union of the polygon from the current field of view and
the polygons of the so far explored space. The second approach works with
polygons of the local field of view only. For every local polygon the frontiers,
the obstacles and the free space is determined and the robot explores as long
frontiers are present in the map.

In this thesis we propose a novel representation that can deal with noisy state
estimates and does not need to rebuild the map or parts of it, e.g. after a loop
closure. By experiments we show that we achieve full coverage of the area to
explore with frontier-based exploration, using our proposed representation.
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Nomenclature

Notation

TWB coordinate transformation from frame B to frame W

RWB orientation of B with respect to W

W tWB translation of B with respect to W , expressed in coordinate system W

Scalars are written in lower case letters (a), vectors in lower case bold letters
(a) and matrices in upper case bold letters (A).

Acronyms and Abbreviations

TSDF Truncated Signed Distance Field

NBV Next-best-view

FOV Field of View

SLAM Simultaneous Localisation and Mapping
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Chapter 1

Introduction

Exploration is a fundamental task in the field of robotics. The goal is to build a
map from a previously unknown environment [4]. To do this, two essential tasks
have to be performed repeatedly: mapping the space the robot currently per-
ceives; and planning where to go next [8]. There is already a large body of litera-
ture covering a variety of aspects of these two tasks, e.g. [21], [8], [12], [4], [11], [14]
and [16]. In this work here, the focus is on the first task, building a map of the
already explored environment. The goal is to find a representation for such a
map, that is pose graph based and can deal with a pose graph exhibiting drift.
This is in contrast to the so far proposed map representations that assume a
perfect state estimation and therefore a drift-free pose graph. If this assumption
does not hold, these representation will create an incorrect map.

1.1 Related Work

1.1.1 Map representations

Map representations can be divided into three different categories [18]:

• Metric representations:

– Occupancy based representations

– Feature based representations:

∗ Geometric (lines, curves, planes)

∗ Landmarks

• Topological representations

• Combinations / hybrid representations

1



2 1.1. Related Work

Metric representations

Metric representations, as defined in [18], express spatial relations between basic
entities implicitly by providing coordinates for each of the spatial objects within
a single absolute coordinate system.

Metric representations have the advantage that the information they provide
can directly be used for tasks such as planning or obstacle avoidance. To build
a global map with a metric representation, the pose estimation and the free
space detection must be good enough that the effects of uncertainty can be
ignored [4]. Otherwise, the map can become inconsistent.

Recently OctoMap [11], an occupancy based representation has received a lot
of attention. In OctoMap, the map is represented as a collection of occupancy
probabilities stored over a voxel grid in a hierarchival octree structure. An
example of such an OctoMap is shown in Figure 1.1.

Figure 1.1: An example of an OctoMap (Figure taken from the ROS documen-
tation http://wiki.ros.org/ccny rgbd/keyframe mapper).

Truncated Signed Distance Fields (TSDFs) are another metric representation,
originally used as an implicit 3D volume representation for graphics, which
became popular with KinectFusion [15]. A metric map representation that uses
lines and curves as features to build a map was proposed in [8]. In this approach,
the map is built with so called solid curves and free curves. Solid curves represent
obstacles and free curves join each pair of successive solid curves.

The limitation of metric based representations is, that they assume perfect pose
estimation. If the pose estimation is noisy, the map can become inconsistent.
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Topological representations

Topological representations express spatial relations between basic entities by
explicitly stating that a certain relation holds between a certain set of ob-
jects [18].

Most topological representations are based on a graph with vertices and edges,
where the vertices represent certain locations and the edges their relationship.
Topological representations mostly do not contain very detailed information of
the environment. This results in map representations that scale well with the
size of the map (in terms of data size).

In [1], a topological map is built from a sparse feature-based map of a visual
Simultaneous Localisation and Mapping (SLAM) system. An example is shown
in Figure 1.2. This topological map is then used for global path planning and the
authors show that their approach achieves similar performance as other systems
but with significantly lower computation time and storage requirements.

(a) Sparse feature-based map of a SLAM
system

(b) Topological map

Figure 1.2: An example of a topological map generated by Topomap (Figures
taken from [1]).

Topological map representations alone are not so widely used in the robotics
community. The reason for this is that topological map representations only
allow a robot to perform actions in a more global scale, as details of the envi-
ronment are not provided.

Hybrid representations

Most combinations of map representations are topological-metric representa-
tions, often called “topometric”. The advantage of such a hybrid approach is,
that they inherit the advantages of both, the metric as well as the topological
representation.

Most topometric representations build a local metric map for every vertex of
the topological map. This way, each map’s uncertainties can be modeled with
respect to its own local coordinate frame as explained in [2]. In contrast to metric
only representations, this allows to build maps with noisy state estimates. The
reason is, that in a local map the drift of the trajectory can be neglected as well
as for the edge between two adjacent vertices of the topological map. There are
several proposed approaches which all follow this idea, e.g. [2], [6], [17] and [14].
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In the approach presented in [17], the global metric map is divided into sub-
maps and a global topological graph is formed on the map. An example is
shown in Figure 1.3.This allows recomputing only isolated areas of the map,
whereas others can remain unchanged. The topological graph allows efficient
path planning on the hybrid map.

Figure 1.3: An example of a topometric map (Figure taken from [17]).

Limitations

The discussed related work all have their advantages and limitations.

Metric map representations cannot handle noisy state estimates and often the
whole map needs to be rebuilt if a part of the map is distorted and needs to be
corrected [8].

Topological representations, on the other hand, do not provide local details
which are required for exploration.

The ability of topometric representations to handle noisy state estimates well
with local sub maps makes them an appealing representation. Some topometric
representations however build local occupancy maps which are not well suited
for deformations and must be rebuilt, in case the sub maps change [17].

Another disadvantage most map representations come with, is the fact that they
do not directly represent frontiers but only free, occupied and unknown space.
The direct representation of frontiers however is beneficial for frontier-based
exploration.

Conclusion

In this thesis we want to develop a map representation which overcomes the
limitations mentioned. The main goal will be to handle a pose graph exhibit-
ing drift due to noisy state estimates. An example situation is illustrated in
Figure 1.4, where the ground truth trajectory is shown in Figure 1.4a and the
estimated trajectory is shown in Figure 1.4b. In a grid based representation
the resulting map would look like the one shown in Figure 1.4c. But what we
want is a representation as shown in Figure 1.4d which maps the environment
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correctly with respect to the estimated trajectory. This situation is described
in more detail in Section 2.7.1.

(a) Ground truth trajectory (b) Estimated trajectory exhibiting drift

(c) With a metric, grid based represen-
tation

(d) Desired representation

Figure 1.4: (a) An example of a trajectory with an obstacle in the middle.
(b) The estimated trajectory e.g. the output of a visual(-inertial) odometry
system. (c) A failure case with a grid based map representation. (d) A correct
map representation relative to the trajectory.

1.1.2 Path planning for exploration

In order to understand how to build a good representation, we need to un-
derstand how it is used. In our case, we want to use the representation for
exploration. As mentioned in the introduction, in Chapter 1, for exploration, a
robot has to perceive its environment and to plan its next move.

Therefore, in path planning for exploration, at every step the robot has to decide
where to move next. Ideally, at the next location, the robot can perceive more
of the previously unseen environment. There are two main planning approaches
in the literature: Next-best-view (NBV) planner and frontier-based planner.

The first one tries to choose the next position in such a way that the perception
is optimal and is known as the so called NBV problem. The NBV problem,
known from the computer vision community, has already been studied since
several decades [5], [13].

The other approach follows a more simple, but often also really efficient scheme.
The strategy is to navigate to the closest so-called frontier. Frontiers are defined
as the border between free space and unknown space. This approach is called
frontier-based exploration and was introduced in [21].
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Next-best-view (NBV) planner

Most NBV planners determine the next best view by sampling candidate points
and evaluating their information gain with a utility function [8], [16]. The
advantage of these approaches is, that the utility function can be adapted to
different scenarios and can also contain additional constraints, e.g. the motion
model of the robot. The disadvantage in practice is, that depending on the
sampling strategy and the utility function, it can take time to evaluate the next
best view point and this can result in a stop-and-go behavior in which the robot
moves for a while, stops to perform the calculation and then moves again [4].

Frontier-based exploration planner

Frontier-based exploration planner are simpler in the way that they do not
involve sampling of candidate points or the evaluation of a utility function.
Because of this, frontier-based exploration planner do not allow for custom
utility functions compared to NBV planners but are faster and as shown in [10],
the frontier-based approach outperforms the NBV approach presented in [8].

Proof of coverage

We proof achieving full coverage with a frontier-based exploration approach
by contradiction: We assume that the exploration is finished and there is still
accessible unknown space left. If the unknown space is not accessible, e.g. if
it is surrounded by obstacles, we do not consider it as unknown space as it is
not possible for the robot to perceive this space. If there is unknown space
that is accessible, it is adjacent to known free space, otherwise it would not
be accessible. The boundary between known free and unknown space defines
frontiers and if there are frontiers, the exploration is not finished which is a
contradiction.

Conclusion

The work in [4] has shown, that frontier-based exploration is the favorable choice
when working with multi-rotors. As our target platform are multi-rotors, we
will use a frontier-based exploration approach for our work.



Chapter 2

Methodology

The methodology starts by motivating the later presented representation ap-
proaches. From the drawbacks of previous work, the required key properties
for a representation are deduced. We then introduce the terminology and the
polygon based representation needed for the explanation of the approaches. Af-
terwards we explain the two approaches and their building blocks.

2.1 Motivation

Previous approaches have their limitations as mentioned in Section 1.1.1. In
this thesis we want to develop a new map representation which overcomes these
limitations and is optimal to perform exploration.

The key properties for such a representation are the following:

• Robustness to drift: Capable of handling noisy state estimates

• Deformable: e.g. after a loop closure

• Frontier-based: Applicable to frontier-based exploration

2.2 Terminology

As explained in Chapter 1, the goal of exploration is to build a map from a
previously unknown environment. As a first attempt, we reduce our work to
2D space. The approach, however, is extendable to 3D space. In a more formal
language, V ∈ R2 is a bounded subspace of R2 that represents the unknown
environment we would like to explore. V consists of free and occupied space
V = Vfree∪Vocc. With a robot that can measure the free space around itself, we
can explore Vfree. The Field of View (FOV) of the robot at pose TW,R is denoted
as Vfov(TW,R) ⊂ Vfree. While a robot is moving on a trajectory TW,R(t), it will
measure Vfov at consecutive sampling times t0, t1, . . .. The poses corresponding
to the sampling times are denoted with TW,R0

, TW,R1
, . . .

7



8 2.3. Polygon based representation

In the pose graph, the aforementioned poses model the vertices/nodes and the
edge between two vertices represents a spatial constraint relating the two robot
poses [9].The edges therefore represent the transformations TRk−1,Rk

.

The so far explored space is the union of all the FOVs measured so far and is
denoted as

V̄free =
⋃
k

Vfov(TW,Rk
). (2.1)

Exploration is thus complete if V̄free = Vfree.

2.3 Polygon based representation

The proposed map representations are based on polygons which provide interest-
ing characteristics. Polygons can represent complex environments at any degree
of precision. In our case, polygons represent the boundary, ∂V̄free, between free
space and unknown or occupied space. Hence, V̄free is implicitly the inside of
the polygons.

In Section 2.4 and Section 2.5 it is explained in depth how a polygon is build from
depth measurements and how it is defined. The explanation how a polygon can
be extended by building the union with another polygon is covered in Section 2.6.

2.4 Polygon construction from depth measure-
ments

We use a RGBD camera as source to build the polygon of the robot’s FOV.
The RGBD camera gives us sampled depth measurements. In our 2D case,
the sampled measurements are equally distributed within the FOV. Thus, the
RGBD camera provides us with a sampled view of the environment in the FOV,
as shown in Figure 2.1.

We build the polygon from these depth measurements by taking the position
of the consecutive depth measurements as vertices, whereas we take the robot’s
position as first (and last) vertex. Hence, if there are n depth measurements,
the polygon will have n+ 1 vertices.

As the polygon represents the boundary between free space and unknown or
occupied space as mentioned in Section 2.3, there are two kinds of polygon
vertices. The vertices of the polygon are frontier vertices, if they were perceived
at the sensor detection range, or obstacle vertices otherwise. In a more formal
way, for vpoly ∈ Vpoly, the set of frontier vertices Fv and the set of obstacle
vertices Ov

‖v − r‖ = rsensor ⇒ vpoly ∈ Fv,

‖v − r‖ < rsensor ⇒ vpoly ∈ Ov,

Fv ∪Ov = ∅
(2.2)
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x

Figure 2.1: An example of a polygon in the local camera frame with occlusions
and the inserted frontier vertices to account for these occlusions.

where Vpoly is the set of polygon vertices, v is the position of the polygon vertex
vpoly and corresponds to a depth measurement from r, r is the position of the
robot and rsensor is the detection range of the depth sensor.

With the definition of the polygon vertices, the edges of the polygon can now be
defined. An edge is either a frontier edge, if it connects two successive frontier
vertices or a frontier vertex and an obstacle vertex. Otherwise, the edge is an
obstacle edge. Again, in a more formal way, for upoly, vpoly ∈ Vpoly, the edge
from upoly to vpoly, (upoly, vpoly), the set of frontier edges Fe and the set of
obstacle edges Oe

(upoly, vpoly) ∈Fe, if upoly ∈ Fv ∪ vpoly ∈ Fv

(upoly, vpoly) ∈Oe, otherwise

Fe ∪Oe = ∅.
(2.3)

Before the polygon is build from the depth measurements, as explained before,
some pre-processing is done.

As a first step, we check the depth measurements for occlusions. This is done
by checking the distances between consecutive depth measurements

|pi,x − pi+1,x| > dthreshold ⇒ ∃ occlusion, (2.4)

where pi,x is the x-coordinate of the ith depth measurement in the robot frame,
pi+1,x is the x-coordinate of the (i + 1)th depth measurement in the camera
frame and dthreshold defines the maximal distance between two consecutive depth
measurements, to be considered as not separated by an occlusion. In case of
an occlusion, an additional frontier polygon vertex is inserted between pi and
pi+1, as visualized in Figure 2.1 with blue points.
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In a second step, we subsample the depth measurements that are spatially close
together to reduce the number of vertices saved for a polygon.

2.5 Polygon

A polygon is a directed ring graph Gpoly = (Vpoly, Epoly) of order n, where Vpoly
is a set with n elements called vertices (or nodes) and Epoly is a set of ordered
pairs of vertices called edges (Epoly ⊆ Vpoly × Vpoly). We call Vpoly and Epoly

the vertex set and edge set, respectively. For upoly, vpoly ∈ Vpoly, the ordered
pair (upoly, vpoly) denotes an edge from upoly to vpoly [3].

As already explained in Section 2.3, the space inside a polygon is known free
space, bounded by obstacles and frontiers. An example of such a polygon is
shown in Figure 2.2.

Vfree

∂Vfree

Figure 2.2: An example of a polygon with obstacle edges and frontier edges.
The inside of the polygon represents known free space.

The data structure that handles the polygons is designed in the way, that an
object of the Polygons class can contain multiple separate polygons. For this,
an object of the polygons class has a list of polygon vertices and a list with the
index of the start vertex of all the separate polygons, as shown in the UML
diagram in Figure 2.4 and visualized in Figure 2.3. This way a Polygons object
can perform operations on all the polygons it contains.

A polygon vertex is described by the following properties: the position of the
vertex in the world frame, a boolean flag indicating if the vertex was observed
at the maximum sensor range, indicating that it is a frontier vertex; the index
of the next and the previous polygon vertex; the index of the corresponding
pose graph vertex, from which the polygon vertex was observed; a boolean flag
indicating, if it belongs to the current field of view and a boolean flag to indicate
if the polygon vertex is accessible or not. With the information if vertices of the
polygon belong to the current field of view, one can determine if the current field
of view provides new information or not, and a planner can plan accordingly.
The UML diagram of the Polygons and the PolygonVertex class is shown in
Figure 2.4.
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First polygon

p0 p1

pn

Second
polygon

pn+1

pn+2

pm

(a)

p0 p1 . . . pn pn+1 . . . pm

polygon_points

start_positions

(b)

Figure 2.3: Visualization of the polygon data structure (For every polygon the
index of the start vertex is saved in the list start positions).

1

*

Polygons

+ start_positions : int[]

+ union(measurement : MyPolygon) : MyPolygon
+ closePolygon()
+ correctPolygon()
+ removeSelfIntersections()

PolygonVertex

+ position : float[]
+ max_range : bool
+ next_point : int
+ previous_point : int
+ corresponding_pose_graph_point : int
+ current_fov : bool
+ non_accessible : bool

Figure 2.4: The UML diagram of the Polygons and PolygonVertex class.

2.6 Polygon union

In both proposed approaches, the union of two existing polygons is needed.
The crucial point when building the union is, that the line segments of the two
polygons are connected in a way that the outside and the inside of the polygons
are consistent, as shown in Figure 2.6. To achieve this consistency, the cross
product of the two line segments can be used to determine how the polygon
points have to be connected to build the union.

The procedure to build the union starts by stacking the two Polygons objects
together to form a new temporary Polygons object. The algorithm then searches
for intersections, as explained in Section 2.6.1. In the next step, the polygon line
segments are merged as described in Section 2.6.2. Afterwards, the polygons
are separated and sorted according to the procedure in Section 2.6.3.
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2.6.1 Searching intersections

To determine if there is an intersection and where, a 2D version of the algorithm
”Intersection of two lines in three-spaces” presented in [7] was used.

Let each line be defined by two points pk,i and pk,i+1 for k = 1, 2. Then the
two lines can be expressed parametrically as l1(t) = p1,i + t(p1,i+1 − p1,i) and
l2(s) = p2,i + s(p2,i+1 − p2,i) for 0 ≤ t ≤ 1 and 0 ≤ s ≤ 1. An intersection
occurs if there exist a t and a s for which l1(t) = l2(s).

To find intersections, the algorithm starts by going through all line segments of
the first polygon l1,i(t) for i = 0, . . . ,m, where m is the number of line segments
the first polygon contains and looks for intersections with line segments of the
second polygon l2,i(t) for i = 0, . . . , n, where n is the number of line segments
the second polygon contains. The algorithm then differentiates the following
cases:

1. @ t, @ s for which l1,i(t) = l2,j(s)∀i, j (No intersection was found)

2. ∃ t, ∃ s, ∃! i, ∃! j for which l1,i(t) = l2,j(s) (One intersection was found)

3. ∃ t, ∃ s, ∃! i, ∃! j1, ∃! j2 , j1 6= j2 for which l1,i(t) = l2,j{1,2}(s) (Multiple
intersections were found)

In case 1), the algorithm simply skips this line segment and proceeds with the
next one. In case 2), an object with the required information to merge the line
segments is created. The UML diagram of this class is shown in Figure 2.5.
This object is added to a list to merge the line segments in a later step. The
algorithm then proceeds with the next line. In case 3), the line segment is split
up into multiple segments, such that there is only one intersection per line seg-
ment afterwards. After the additional points are added, the algorithm searches
again for intersections and proceeds as in case 2).

2.6.2 Merging the line segments

This procedure adds the intersection point to the polygon vertices and connects
the polygon vertices accordingly by setting the indices of the next and previous
points of the corresponding polygon vertices.

To merge two line segments, the following information is needed:

• The first vertex of the polygon line segment of the first polygon (p1,1)

• The second vertex of the polygon line segment of the first polygon (p1,2)

• The first vertex of the polygon line segment of the second polygon (p2,1)

• The second vertex of the polygon line segment of the second polygon (p2,2)

• The intersection point (i)

• The index of p1,1 in the polygon vertices list (self point)
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• The index of p2,1 in the polygon vertices list (other point)

All this information was packed into an object of the MergeSegmentsInformation
class, for every intersection found by the algorithm in the previous step. The
UML diagram of the merge segments information class is shown in Figure 2.5.

MergeSegmentsInformation

+ p11 : float[]
+ p12 : float[]
+ p21 : float[]
+ p22 : float[]
+ intersection : float[]
+ self_point : int
+ other_point : int

Figure 2.5: The UML diagram of the MergeSegmentsInformation class.

To merge the line segments, the algorithm begins by calculating the cross prod-
uct c of the two line segments l1, l2 (one from the first polygon and one from
the second polygon).

l1 = p1,2 − p1,1

l2 = p2,2 − p2,1

c = l1 × l2,

(2.5)

where p1,1, p1,2 are the start respective the end point of the first line segment
and p2,1, p2,2, the start respective the end point of the second line segment.

With the sign of the cross product, the point order can be determined.

p1,1 → i→ p2,2, if c ≥ 0

p2,1 → i→ p1,2, if c < 0,
(2.6)

where i is the intersection point. Some examples of this line segment merge
approach are shown in Figure 2.6.

2.6.3 Sorting polygons

After all the line segments are merged, some polygon vertices and edges do not
longer belong to a valid polygon, as illustrated in Figure 2.7 with dotted edges.

As explained in Section 2.5, the data structure in which the polygons are saved
has a list with all the polygon vertices and a list with the indices of the start
vertex of every polygon it contains, visualized in Figure 2.3.

To sort the polygons, the separate polygons and the index of their starting
vertex are determined and saved. Afterwards, a new list of polygon vertices is
created, containing only the vertices which belong to a valid polygon and the
indices of the start vertices are adjusted.
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(a) (b)

(c) (d)

Figure 2.6: Some examples of the line segment merge approach (Line segment
of the first polygon in blue, line segment of the second polygon in orange and
the resulting line segment in green. The areas with background color represent
the inside of the polygons whereas the area with white background represent
the outside of the polygons).

Unknown space

FoV

Known free space

Figure 2.7: An example of separated polygons (Dotted edges are edges no longer
belonging to a valid polygon).

To achieve this, for every detected intersection, the algorithm tries to traverse
the polygon until it reaches the intersection vertex again or another already
traversed vertex. The algorithm then adds the index of the intersection vertex
to the list of the start vertex indices, if the polygon was fully traversed, or it
continues with the next intersection, if the polygon was not fully traversed. This
way, the index of the start vertex for every valid polygon is determined.

An example is shown in Figure 2.8. If we start to traverse the polygon from
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the first intersection found (red circle), the first point we will revisit will be
the first intersection point (where we started) and we will add this intersection
point to the start vertices. If we afterwards start to traverse the polygon from
the second intersection found (orange circle), we already start at a visited point
and therefore do not add this intersection point to the start vertices.

FoV1

2

Figure 2.8: Traversing the polygon from the intersection points (The red circle is
the first intersection found and the orange circle the second intersection found.
The polygons are traversed in the direction of the arrows).

Now the index of every polygon start vertex is determined and saved, but the
list with the polygon vertices may still contain some old polygon vertices, e.g.
the dotted edges in Figure 2.8, which do not longer belong to any polygon. The
next step is to remove these old vertices and to adjust the index of the polygon
start vertices. The algorithm does this by traversing each polygon from the
polygon start vertex and by building a new list of polygon vertices.

2.6.4 Special cases

Multiple intersections in a line segment of the second polygon

Multiple intersections in line segments of the first polygon are handled, as de-
scribed in Section 2.6.1, by splitting up the intersecting line segment of the
second polygon, as shown in Figure 2.9. Multiple intersections in line segments
of the second polygon are handled in a similar way.

(a) Multiple intersections (b) Line segment split up

Figure 2.9: Handling of multiple intersection by splitting up the line segment
into two line segments.

After all line segments of the first polygon are checked for intersections, we
examine the stored MergeSegmentsInformation objects if two intersections have
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the same start and end point in the second polygon. If this is the case, we
add an additional polygon vertex in between the two intersections as shown in
Figure 2.9b and adjust the start and end point of the MergeSegmentsInformation
object.

Point on a line segment

It can happen that a polygon vertex is on the line segment of another polygon,
as shown in Figure 2.10a. In this case, the algorithm finds two intersections:
One where the polygon vertex on the line segment is the end point and one
where it is the start point. As we need to detect only one intersection in this
case, we move the polygon vertex slightly away from the line segment, as shown
in Figure 2.10b. Although we modified a vertex of the polygon, the shape of
the polygon does not change and the influence of this modification is negligible
compared to the noise introduced by the state estimation.

(a) Polygon vertex on a line seg-
ment.

(b) Polygon vertex moved away
from the line segment.

Figure 2.10: Handling of a polygon vertex on a line segment.

Parallel line segments

In case of parallel line segments, as shown in Figure 2.11, for one line segment
two intersections will be found. In this case we also want to have only one inter-
section, similar to the case of a point on a line segment, described above. In this
case we ignore the first intersection and only consider the second intersection.

Figure 2.11: An example of parallel line segments.

2.7 First approach

In a first approach we tried to merge all field of view polygons into a global set
of one outer and several inner polygons.
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As explained in Section 2.2, the exploration is finished if V̄free = Vfree, where
V̄free is the so far explored space. The so far explored space is the union of all
the FOVs measured so far, as stated in (2.1).

At every measurement, the latest polygons Pk(TW,Rk
) are built by taking the

union of the polygons at the previous measurement Pk−1(TW,Rk−1
) and the

current FOV

Pk(TW,Rk
) = Pk−1(TW,Rk−1

) ∪ Vfov(TW,Rk
). (2.7)

When building a map with polygons, there are two kinds of polygons: an outer
polygon and inner polygons. The robot is located inside of the outer polygon
and outside of the inner polygons. To distinguish these two types, we can use
the fact that polygons have a direction. Polygons need to have a direction
in order to distinguish between the inside and the outside of a polygon. The
polygon built from the depth measurements is clock wise oriented and therefore
the outer polygon as well, as the known space is inside. Inner polygons, on
the other hand, are counter-clock wise oriented as the known space is located
outside of them. An example is shown in Figure 2.12.

Unknown space

FoV

Known free space

Figure 2.12: An example of an outer polygon in which there is known free space,
an inner polygon with unknown space inside and the polygon of the FOV.

2.7.1 Active area

Visual(-inertial) odometry systems produce a pose graph exhibiting drift, as
shown in Figure 2.13, and therefore polygon merges can only locally guarantee
to be correct, where the drift is negligible.
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(a) Ground truth trajectory (b) Estimated trajectory exhibiting drift

(c) With a metric, grid based represen-
tation

(d) Desired representation

Figure 2.13: (a) An example of a trajectory with an obstacle in the middle.
(b) The estimated trajectory e.g. the output of a visual(-inertial) odometry
system. (c) A failure case with a grid based map representation. (d) A correct
map representation relative to the trajectory.

To account for this, the concept of the active area is introduced. The active area
is the local area within the drift is assumed to be negligible. Similar concepts
were already used in [20] and [19]. In contrast to those approaches, we make
use of the neighboring pose graph vertices in the pose graph to define the active
area. We define the pose graph vertices of the active area as all the pose graph
vertices maximum n edges away from the current pose graph vertex.

Vpg,active = {vpg,i | dist(vpg,current, vpg,i) ≤ n} ∀vpg,i ∈ Vpg, (2.8)

where vpg,current is the pose graph vertex, where the robot is currently located
and dist(vpg,1, vpg,2) returns the minimal number of edges between vpg,1 and
vpg,2. We set n empirically to a value which results in an active area which is
neither too small nor too big. A detailed explanation will follow in Section 2.7.5.
The polygon vertices of the active area are then all the polygon vertices that
belong to a pose graph vertex of the active area

Vpoly,active =
⋃
i

Vpoly,active,i

vpg,active,i 3 Vpoly,active,i
vpg,active,i ∈ Vpg,active.

(2.9)

Loop closures, introduced in Section 2.7.3, are implicitly handled as they result
in an additional edge in the pose graph and thus connect two points in the pose
graph.
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To prevent the union of unrelated polygons which do overlap in space, due to
drift in the trajectory, the union of two polygons is only performed if the inter-
sections of the two polygons are in the active area. As a result, only polygons
that are in a space where the drift is negligible are merged with the union oper-
ation. Polygons that appear to intersect, but do not belong to the same active
area, are kept separate.

This leads to the following adaptations to determine if there is an intersection
and where, introduced in Section 2.6.1. With the concept of the active area,
the algorithm considers only line segments of the first and second polygon that
belong to the active area. Thus, the line segments of the first polygon to check
for intersections are l1,i(t) if vpoly,1,i ∈ Vpoly,active ∩ vpoly,1,i+1 ∈ Vpoly,active,
where vpoly,1,i and vpoly,1,i+1 are the polygon vertex of the first respective second
point of the line segment. The line segments of the second polygon to check for
intersections are l2,i(t) if vpoly,2,i ∈ Vpoly,active ∩ vpoly,2,i+1 ∈ Vpoly,active, where
vpoly,2,i and vpoly,2,i+1 are the polygon vertex of the first respective second point
of the line segment.

2.7.2 Entry / exit intersections

As polygons are always closed, if a polygon line segment enters another poly-
gon, there must also be a polygon line segment which exits the other polygon.
Consequently, intersections always have to appear in pairs (entry and exit in-
tersection). In some cases, only one intersection of a pair is found, due to the
fact that only polygon line segments in the active area are considered while
searching for intersections, as shown in Figure 2.14.

FoV
x x

Figure 2.14: An example where an entry intersection is not in the active area
(Edges in magenta belong to the active area, whereas black edges do not belong
to the active area. The × represent intersections. As the left, black intersection
does not belong to the active area, it is not detected during the search for
intersections. The arrows on the polygon edges indicate the direction of the
polygon, the orange arrows next to the polygon edges represent the direction
in which the algorithm searches for the remaining entry intersection in this
example).

To check if the associated intersection of an already found intersection is also
already found or not, and has to be found, the algorithm proceeds as follows.

The algorithm first checks if the found intersection is an entry or exit intersec-
tion. This can again be determined with the sign of the cross product of the
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two line segments l1 and l2 (one from the first polygon and one from the second
polygon)

l1 = p1,2 − p1,1

l2 = p2,2 − p2,1

c = l1 × l2,

(2.10)

where p1,1, p1,2 are the start respective the end point of the first line segment
and p2,1, p2,2, the start respective the end point of the second line segment.

Then, with the sign of the cross product, it can be determined whether the
intersection belongs to an entry or exit intersection.

entry intersection , if c ≥ 0

exit intersection , if c < 0
(2.11)

If the found intersection is an entry intersection, the algorithm follows the line
segments after l1 and for every subsequent line segment lsub = psub,2 − psub,1

it checks if an already found intersection exists where the start point of the
first line segment p1,1 is equal to the start point of the current subsequent line
segment psub,1 (p1,1 = psub,1). If this is not the case, the algorithm checks if
there is an intersection between the current subsequent line segment and the
second polygon. The algorithm repeats these steps until an exit intersection is
found.

Similarly, if the found intersection is an exit intersection, the algorithm follows
the line segments before l1 and does the same checks described before for every
preceding line segment until an entry intersection is found.

2.7.3 Loop closure

As discussed before, the union of two polygons is only built if both polygons
belong to the active area.

To prevent mapping of already observed area, e.g. as it would happen in the
example shown in Figure 2.15, SLAM systems perform a loop closure when a
robot revisits a place and correct the pose graph accordingly.

After a loop closure, the trajectory is locally drift-free and the polygons can be
corrected, given the new positions of the pose graph vertices which the SLAM
system provides.

To correct the polygon after a loop closure, the position of the polygon vertices
are corrected first. Then, some maintenance is needed to deal with inconsis-
tent self-intersections. Afterwards, the union of the polygons is built with the
extended active area.

Correction of the polygon vertices position

To correct the position of every vertex of the polygons, the algorithm iterates
through all the polygon vertices and performs the correction for every vertex
separately.
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Figure 2.15: An example of an endless loop where a robot would map already
observed space if there is no loop closures.

To calculate a corrected polygon vertex position, the algorithm uses the esti-
mated position and orientation of the anchor point (the position of the corre-
sponding pose graph vertex) and the true position and orientation of the same
anchor point. It then calculates the corrected position according to

Wpp,corr =Wpanchor, eal

+ WRWR,ealWRT
WR,ebl(Wpp,ebl −Wpanchor, ebl),

(2.12)

where Wpp,corr is the position of the corrected polygon vertex, Wpanchor, eal is
the estimated position of the anchor point after the loop closure, WRWR,eal is
the estimated rotation from the robot frame to the world frame after the loop
closure, WRT

WR,ebl is the estimated rotation from the world frame to the robot
frame before the loop closure, Wpp,ebl is the estimated position of the polygon
vertex before the loop closure and Wpanchor, ebl is the estimated position of the
anchor point before the loop closure.

Polygon merging

In polygon merging, overlapping parts of polygons are merged. The procedure to
merge a polygon is similar to the process of building the union of two polygons,
which was described in Section 2.6. The difference is, that instead of the second
polygon only the first polygon is given but the two overlapping parts are treated
like two polygons.

2.7.4 Some improvements

Neglecting the intersection points

While performing some experiments we observed, that adding the intersection
points as mentioned in Section 2.6.2 leads to spiky polygons, as shown in Fig-
ure 2.16a. This can lead to a lot of self intersections after the polygon is cor-
rected, as explained in Section 2.7.3. A way to get smoother polygons is by
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neglecting the intersection point while merging the line segments, as explained
in Section 2.6.2, shown in Figure 2.16b. In the current implementation, inserting
the intersection point can be either deactivated or activated by a flag.

(a) (b)

Figure 2.16: Polygons with and without the intersection point inserted.

2.7.5 Problems of the first approach, partial solutions and
failure cases

Self intersections

Self intersections can arise in multiple ways: if two parts of the same polygon,
due to drift, overlap in space; if a polygon gets twisted with the correction of
the polygons; or if already mapped space is perceived again because no loop
closure was triggered.

While unwanted polygons that arise from overlapping polygon parts are pre-
vented from merging, thanks to the concept of the active area, we need to find
a way to resolve the other two cases.

Self intersections after polygon correction - twisted polygons

Self intersections can arise after the correction of the position of the polygon
vertices when a polygon gets twisted, as shown in Figure 2.17. In twisted
polygons, a self intersection leads to a change of the orientation in one part of
the polygon. This can lead to a failure when a polygon union is built with the
polygon of the FOV.

t0 t1

Figure 2.17: An example of a polygon that gets twisted after the correction of
the polygon vertices.
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A normal inner polygon is counter-clock wise oriented and the inside of the
polygon represents unknown space (indicated by the arrows pointing to the
unknown space in Figure 2.19a). An upended inner polygon, on the other
hand, is clock wise oriented and the unknown space would be outside and the
known space inside (indicated by the arrows in Figure 2.19c), which is wrong
as the outside of the upended polygon was already explored and only the outer
polygon should be clock wise oriented, as explained in Section 2.7. To check if
a polygon is the outer polygon or an inner polygon, one can check if the robot
is located within the polygon or not. When the union between an upended part
of a polygon or an upended polygon and the polygon of the FOV is built, the
union is wrong as it extends the polygon rather than decreasing it, as shown in
Figure 2.18.

(a) (b)

Figure 2.18: An example of a union of the polygon of the FOV with the upended
part of a polygon.

Resolving twisted polygons

We check for twisted polygons and resolve them right after they arise, which is
after the correction of the position of the polygon vertices.

Resolving inner, twisted polygons is done in three steps: First, the polygons
are searched for self intersections similar as explained in Section 2.6.1. Second,
the polygons with a self intersection are split into two polygons. This is done
by reconnecting the polygon points of the intersecting polygon line segments
(red edges in Figure 2.19c). This results in two polygons, one counter-clock
wise oriented and one upended, clock wise oriented polygon. In the third step,
to correct the orientation of inner, upended polygons, their orientation gets
reversed, as shown in Figure 2.19d.

Instead of reversing upended polygons it would also be possible to remove them
to prevent polygon union failures. If the upended part of a twisted polygon
represents already explored space, removing the upended part would be the
right thing to do. If, on the other hand, the upended polygon part represents
unexplored space, removing it would be wrong. As we can not distinguish this
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two cases, we do not remove the upended polygon but reverse its orientation,
which results in a normal inner polygon.

(a) Normal poly-
gon

(b) Self intersected
polygon

(c) Separated poly-
gons

(d) Separated,
polygons with
correct orientation

Figure 2.19: From a normal polygon to a polygon with a self intersection, how
to separate the polygons and how to reverse the wrong oriented polygon.

Self intersection in double perceived space

In a scenario as the one shown in Figure 2.20a and Figure 2.20b, the robot
perceives free space it already has perceived at a previous point of time. As
the SLAM system has not yet triggered a loop closure, the active area contains
only one side of the polygon, the FOV polygon intersects with (Figure 2.20a).
Therefore, the polygon union is built as if the robot would perceive free unknown
space and that leads to a self intersection (Figure 2.20b). A loop closure before,
as shown in Figure 2.20c and Figure 2.20d, or after the polygon union, would
resolve this situation. If, however, the SLAM system does not trigger a loop
closure, we end up with an inner polygon part that is clock wise oriented. This
can lead to a failure in a subsequent polygon union if we do not resolve this
situation similar to the twisted polygons.

Resolving self intersections in double perceived space

To resolve self intersections in double perceived space, we proceed similar as we
do to resolve twisted polygons. Before we perform a polygon union, we search in
the active area of the intersected polygon for self intersections and then resolve
them as described above. We restrict the search for self intersections to the
active area, as only there the drift is negligible and we can guarantee consistent
polygons when they are modified. While this fix works for many cases, the
dependence on the size of the active area leads to a limitation as described
next.

Failure cases

There are situations where the size of the active area is a critical factor and
decides, if the resulting polygon is correct or not. We will describe two such
scenarios, one in which the size of the active area should be as big as possible
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(a) (b)

(c) (d)

Figure 2.20: ((a) and (b)) An example of a polygon self intersection due to the
absence of a loop closure and a too small active area. ((c) and (d)) An example
where the size of the active area is fine (due to a loop closure) (The polygon
edges of the active area are shown in magenta).

to achieve a correct polygon and one, in which the opposite is the case. These
contradicting corner cases make the active area approach unsuitable for many
use cases.

In scenarios, where there is a polygon self intersection, e.g. as illustrated in
Figure 2.21a and Figure 2.21c, the size of the active area is critical. As explained
in Section 2.7.5, if a polygon intersects with the polygon of the FOV, it will be
searched for self intersections within the active area. If such a self intersection
exists, the polygon will be split into two polygons and the upended polygon will
be reversed, as shown in Figure 2.21b. Now the union of the polygon from the
FOV and the existing polygon can be built without a problem.

However, if the self intersection is not within the active area, as shown in Fig-
ure 2.21c, the self intersection will not be removed and the polygon of the FOV
intersects with an upended part of the polygon. As discussed earlier, the union
with a wrong oriented inner polygon leads to a wrong polygon and should be
prevented.

In the above mentioned case (Figure 2.21c), the solution would be to increase
the size of the active area, that it also contains the self intersection.

Another situation, where the size of the active area is critical, is illustrated in
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(a) Self intersection within the active area.

(b) Self intersection removed and upended polygon reversed.

(c) Self intersection out of the active area.

Figure 2.21: Self intersection within and out of the active area in magenta.

Figure 2.22. In this scenario, there is a small wall for which the polygon is
located at a lower position as the wall is in reality, due to drift in the trajectory.
The polygon of the FOV than overlaps with the part of the polygon on the other
side of the wall. In case of a big active area, the wall will simply be removed as
the polygon parts on both sides of the wall belong to the active area, illustrated
in Figure 2.22a and Figure 2.22b. On the other hand, if the active area is small
enough, that only the polygon part on one side of the wall belongs to the active
area, the part of the polygon that represents the wall would not be removed.

These two scenarios demonstrate the problem of the size of the active area. For
certain situations it will be too small, whereas for other situations it will be too
big.

2.7.6 Achieving coverage

The discussed failure cases in Section 2.7.5 could lead to an unsuccessful explo-
ration where there is still unexplored space left. The reason that the proof in
Section 1.1.2 does not hold in such scenarios is the following: If a polygon gets
removed due to a failure while building a polygon union, it can happen that
frontiers are removed without further exploration.

Besides these failure cases, the robot knows where there are frontiers if there are
any. If the used SLAM system allows the robot to move along the pose graph to
a certain pose, the robot can reach the frontiers and the proof in Section 1.1.2
holds for this first approach.
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(a) The polygon parts on both
sides of the wall belong to the
active area.

(b) The wall no longer exists af-
ter the polygon union.

Figure 2.22: An example of a too big active area.

2.8 Second approach

As the first approach introduced in Section 2.7 has some limitations, discussed
in Section 2.7.5, we developed a second approach that does not have these
problems.

The drawbacks of the active area approach come from the fact that we build a
global map. In the new approach we do not build a global map but keep the
polygon of the FOV of every pose separate.

2.8.1 Building the local polygons

As we not longer have a global polygon, and work with local polygons only, we
have to introduce a new type of polygon vertices and edges, one that represents
free space.

We proceed as follows to determine the type of the polygon vertices for the
polygon of the current measurement. We start by taking a copy of the cur-
rent polygon. Then we check if there are any intersections between the current
polygon and the polygons of the directly connected pose graph points (Fig-
ure 2.23a and Figure 2.23f). If there are intersections, we resolve overlaps of
these two polygons and proceed with the polygons of the next neighboring pose
graph points (Figure 2.23b and Figure 2.23g) until there are no intersections
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found anymore (Figure 2.23i). This process is illustrated in Figure 2.23 and
Figure 2.24.

(a) (b) (c) (d) (e)

(f) (g) (h)

(i)

Figure 2.23: Steps to build the extended polygon: First five steps ((a) - (e)),
following the pose graph in one direction. Following the pose graph in a second
and third direction ((f) - (h)). Last step, no intersecting polygon left (i).

As every polygon is represented in the local frame of the pose at which the
measurement was taken, we have to transform the polygons of the neighboring
pose graph points into the frame of the current pose before we build the union.

In a more formal way,

R0
Pgrown =

⋃
i

f (P(TW,Ri
)) TR0,Ri

P(TW,Ri
), (2.13)

with

f (P(TW,Ri
)) =

{
1, if P(TW,Rj ) ∪ P(TW,R0) 6= ∅, for j = 0, . . . , i

0, otherwise
(2.14)

where P(TW,Ri
) is the local polygon at pose TW,Ri

, P(TW,R0
) is the local polygon

of the current pose and TR0,Ri
is the transformation form the frame of the ith

pose into the frame of the current pose.
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(a) Current polygon, neighboring poly-
gons, intersecting with the current
polygon and neighboring polygons, not
intersecting with the polygon of the
current FOV.

(b) Extended polygon and parts of the
polygon of the current FOV (Dotted
edges represent free space).
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(c) Pose graph with the transformations
between the pose graph points used to
transform the local polygons into the
frame of the current pose.

Figure 2.24: Building the extended polygon.

After we have built the union of all the intersecting polygons, we determine
which of the polygon vertices of the local polygons are not contained in the
extended polygon. We set the type for these polygon vertices to free space.

Again, in a more formal way,

vpoly,i ∈ Vpoly,local ∩ vpoly,i /∈ Vpoly,grown ⇒ vpoly,i ∈ FRpoly

Opoly ∩ Fpoly ∩ FRpoly = ∅
(2.15)

where Vpoly,local is the set of polygon vertices of a local polygon, Vpoly,grown is
the set of polygon vertices of the grown polygon and FRpoly is the set of polygon
vertices, representing free space.

2.8.2 Loop closures

As we do not build a global map in the second approach, correcting the pose
graph after a loop closure is not required and has not to be done. Without the
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correction of the pose graph, it will keep the drift over the trajectories and we
must deal with the virtual displacement occurring at loop closures in another
way. For this, we introduce the so called loop closure edge in the pose graph that
connects the virtual displaced poses and represents the relative transformation
between them. An example of such a loop closure edge is shown in Figure 2.25.

Figure 2.25: An example of a loop closure: The two red FOVs are the virtually
displaced pose graph points (representing the same physical location). The
black dotted pose graph edges are normal pose graph edges and the green pose
graph edge is a loop closure edge.

2.8.3 Achieving coverage

For a frontier based exploration we need to know where there are frontiers and
how we can reach them. With a local polygon for every pose in the pose graph,
the robot knows where the frontiers are located if there are any present. If the
used SLAM system allows the robot to move along the pose graph to certain
pose, the robot is also able to reach the frontiers.

Under this condition, the proof in Section 1.1.2 is therefore applicable for this
approach.

2.9 Rapid exploration

To perform exploration with the proposed representations, we adapted the rapid
exploration approach introduced in [4].

The rapid exploration approach proposed in [4] is designed specifically for multi-
rotor exploration at high speeds. The reactive behavior of the algorithm allows
for fast incorporation of new information and results in efficient trajectories.
Compared to classic frontier-based exploration, the approach can occasionally
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exhibit a small increase in the total path length, but at the same time achieves
smaller exploration times for the same maximum velocity constraint. To achieve
the reactive behavior, the multi-rotor rapidly selects a goal frontier from its field
of view. The goal frontier is selected in a way that minimizes the change in
velocity. If there are no frontiers in the field of view, the algorithm switches to
a classical frontier selection method.

To have the approach working with the proposed representation, the following
adaptations were required: The frontier selection, discussed in Section 2.9.1, the
accessibility check, explained in Section 2.9.2 and the classical frontier selection
method, as detailed in Section 2.9.3.

2.9.1 Frontier selection

Instead of choosing the frontier that leads to a minimal amount of velocity
deviation, we choose the frontier that leads to the minimal amount of orientation
change. The resulting behavior is the same, but evaluating the orientation
changes is simpler within our implementation.

2.9.2 Accessibility check of frontiers

In the original approach, presented in [4], OctoMap [11], an occupancy grid
based representation was used. OctoMap builds a global map and provides the
functionality to check a path for intersections with occupied cells. In contrast,
our representation has the concept of the active area, introduced in Section 2.7.1,
and only the position of obstacles in this active area is supposed to be known
exactly or even only the current FOV in the second approach. Therefore, during
exploration, only the obstacle points in the active area, respective the current
FOV can be checked for intersections with the path. Additional to this, the
current FOV is also checked not to head in the direction of an obstacle.

2.9.3 The classical frontier selection method

The classical frontier selection method in the original rapid exploration approach
[4] searched the shortest path to any frontiers with the Dijkstra algorithm in the
OctoMap [11]. As we do not assume to have access to a global map, we search
for the closest frontier with a breadth-first search along the pose graph and then
take the pose graph vertices which connect the robot position with the frontier
position as waypoints. This way, we track back the pose graph or across loop
closures until we reach the closest pose graph vertex that has a frontier vertex.

If a pose graph vertex is too close to obstacles, e.g. a wall, it can happen that the
accessible check for a frontier vertex fails and thus accessing the frontier vertex
from its corresponding pose graph vertex is not possible. For this case, the
concept of the “normal point” was introduced. The “normal point” lies on the
normal of the frontier line, in a certain distance away from the unexplored space.
If a frontier vertex is not accessible via its corresponding pose graph vertex, the
planner will instead try to access the frontier vertex via this “normal point”.



Chapter 3

Experiments

As there is no other exploration approach that is based on a representation,
capable of handling noisy state estimates, we can only present some results of
our approach and compare the exploration time to an exploration with a grid
based representation.

3.1 Experimental setup

To perform our experiments, we implemented a simulated SLAM system. It is
implemented in the Python programming language and uses the libraries numpy
and matplotlib. The simulation loops through the three parts: mapping, path
planning and plotting until the exploration is finished. One iteration takes in
average 0.3s. The noise of the state estimates is simulated with the help of a
gaussian random number generator provided by the numpy library.

The simulated SLAM system has basic loop closure and localization functional-
ity. Loop closures are triggered when the distance from the robot to a previous
visited place is equal or less than the camera range. A loop closure is only
triggered if the previous point is accessible form the current robot position to
prevent loop closures over an obstacle. Compared to a real SLAM system with
a place recognition module, our loop closure simulation is quite limited. How-
ever, for a minimal simulation environment to evaluate our map representation
approach, it fulfills its purpose.

To simulate localization when the robot is moving through a previous visited
area, we calculate the distances to the pose graph points and if the robot is
enough close to a pose graph point (below a certain threshold) we set the robot’s
current position to the one of the pose graph point. Again, this simulated
localization is quite limited compared to a real SLAM system, but suites the
purpose of evaluating our map representation approach.

As mentioned, the implemented SLAM simulation environment used for the
experiments has its limitations, e.g. no real place recognition. These limitations
can lead to synthetic problems while traversing back the pose graph. As the
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main focus of this thesis is the representation approach, we implemented a
teleport function for the robot. With this, the robot can directly teleport to
a pose graph point and does not have to move all the way back. To account
for the time the robot would need to reach a pose graph point normally, we
calculate the path between the pose graph points and determine the amount of
time needed by assuming the robot could move at its maximal speed. As the
robot moves in known area and should be able to localize itself while traversing
the pose graph, the assumption to move at maximal speed is reasonable.

3.2 Evaluation method

We want to evaluate if it is possible to reach full coverage performing frontier-
based exploration with our proposed map representation approach. For this, we
overlay the map with a cell grid and perform exploration on this discretized map
in parallel. During the exploration we mark grid cells as explored if a depth
measurement ray (a ray from the robot position to the depth measurement)
intersects with the grid cell, as shown in Figure 3.1.

Figure 3.1: Grid cells in red are explored grid cells. Grid cells in white are
unexplored grid cells. The lines in red are the rays from the robot to the depth
measurements. The blue rectangle represents the robot.

For the ground truth, we evaluate the number of occupied grid cells, where we
consider a grid cell as occupied if an edge of an obstacle intersects with the
grid cell or if the cell is within an obstacle. An example of a map and the
corresponding ground truth is shown in Figure 3.2. We then determine the
number of free grid cells as nfree = ntotal−nocc, where ntotal is the total number
of grid cells, which we know from the creation of the grid and nocc is the number
of occupied grid cells.

After the exploration we compare the number of explored cells with the ground
truth. In this way we can evaluate if the exploration achieved full coverage.
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(a) Map with obstacles. (b) Map with occupied cells in red and
free cells in blue.

Figure 3.2: An example of a map and the corresponding ground truth (occupied
and free cells).

3.3 Exploration time comparison

We want to compare the exploration time of a frontier-based exploration using
our map representation to a baseline. As there are no other map representations
fulfilling our key properties, we decided to compare with a grid-based metric map
representation, as it is an often used representation.

This comparison is not entirely fair because grid-based map representations
are discrete representations and our proposed representation is a continuous
representation. We also use the ground truth poses for the state estimates in
the explorations with the grid-based representation, whereas the exploration
with our proposed representation has only the noisy state estimates described
before. Nevertheless, this comparison should give us a general idea about the
exploration with our proposed representation approach.

For the comparison, we record the time until all free grid cells are explored as
well as the time until there are no more frontiers left. We than take this two
times for the comparison.

3.4 Experiment output

During the experiments we visualize the following elements: A coverage plot
that visualizes the unexplored, blue grid cells, and the explored, orange grid
cells as well as the frontier and obstacle polygon vertices. A plot showing the
estimated and true trajectories of the robot and a plot with the pose graph that
also visualizes loop closure edges. An example of this visualization is shown in
Figure 3.3.

Next to the above described visualization during the experiment, we also save
the time stamps and the ratio of explored space for every time stamp. With
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Figure 3.3: Experiment visualization: The demo map with the robot, its FOV,
frontier and obstacle vertices; The true and estimated trajectories; The coverage
plot with the explored cells in orange and the unexplored cells in blue as well
as the frontier and obstacle vertices in blue respective red; The pose graph.

this data we can generate the coverage/time plots, as an example is shown in
Figure 3.5, and can compare the exploration time.

3.5 Experiments

We performed experiments on three different simulated maps, shown in Fig-
ure 3.4. While we created the first two maps on our own, the third map mimics
Scenario 2 from [12]. For all the experiments we used gaussian noise with mean

mp =
[
0m 0m

]T
and standard deviation σp =

[
0.1m 0.1m

]T
for the position

estimates and gaussian noise with mean mo = 0rad and standard deviation
σo = 0.015rad for the orientation estimates.
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(a) First map (b) Second map

(c) Third map

Figure 3.4: The simulated maps.

3.5.1 First map

The coverage/time plot for the exploration with the proposed representation
and the grid-based approach is shown in Figure 3.5. The explored map with the
grid cells, the estimated and true trajectories, and the pose graph, are shown
in Figure 3.6. With the proposed representation, the exploration takes 432.85s
whereas with the grid-based representation it takes 280.21s.

3.5.2 Second map

The coverage/time plot for the exploration with the proposed representation and
with the grid-based representation is shown in Figure 3.7. The explored map
with the grid cells, the estimated and true trajectories, and the pose graph, are
shown in Figure 3.8. With the proposed representation, the exploration takes
3030.37s whereas with the grid-based representation it takes 323.76s.
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Figure 3.5: Coverage/time plot of the first map.

3.5.3 Third map

The coverage/time plot for the exploration with the proposed representation
and the grid-based representation is shown in Figure 3.9. The explored map
with the grid cells, the estimated and true trajectories, and the pose graph, are
shown in Figure 3.10. With the proposed representation, the exploration takes
3166.36s whereas with the grid-based representation it takes 497.36s.

3.5.4 Discussion

We have shown that the explorations on all maps with the proposed represen-
tation, as well as the grid-based representation, reached full coverage. We also
compared the exploration time for both representations and showed that our
proposed representation takes up to 9.36× more time than the grid-based rep-
resentation. The reason for this is, that if all grid cells are explored, there are
still frontier polygon vertices located within explored grid cells, because the grid
cells are a discrete (sampled) representation of the map and the polygons are
a continuous representation. Another reason is, that the exploration with the
grid-based representation uses the ground truth poses for the state estimates
and not the noisy state estimates. A fair comparison is therefore not possible.
Nevertheless, as we have performed the exploration with both representations
and reached full coverage with both, we know that the exploration with our
proposed representation in our experiments leads to full coverage.
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(a) Coverage plot (b) True and estimated trajectories

(c) Pose graph

Figure 3.6: The grid cells, the trajectories and the pose graph at the end of the
experiment of the first map.
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Figure 3.7: Coverage/time plot of the second map.
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(a) Coverage plot (b) True and estimated trajectories

(c) Pose graph

Figure 3.8: The grid cells, the trajectories and the pose graph at the end of the
experiment of the second map.
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Figure 3.9: Coverage/time plot of the third map.

(a) Coverage plot (b) True and estimated trajectories

(c) Pose graph

Figure 3.10: The grid cells, the trajectories and the pose graph at the end of
the experiment of the third map.
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Discussion

In this thesis, we developed a map representation that can deal with noisy state
estimates, that can handle loop closures and is suitable for frontier based explo-
ration. In both approaches, polygons are used for the representation. Polygons
represent the boundary between known free space and obstacles or unknown
space. The inside of polygons therefore implicitly represents free space.

4.1 First approach

In the first approach, the so called “active area” approach, we tried to build
a global map with polygons. Each polygon vertices had a corresponding pose
graph point. This allows to correct the polygons according to changes in the
pose graph. The polygons are therefore deformable and the map can be adjusted
in case of a correction of the pose graph, e.g. after a loop closure.

As we already discussed in Section 2.7.5, the active area approach has its lim-
itations as we could not find a general way to resolve twisted polygons and as
the size of the active area has to be large for certain scenarios and small for
others.

4.2 Second approach

In the second approach, we do no longer build a global map, but work with
the local polygon at each pose of the pose graph. Working with these local
polygons has the advantage, that we do not have to deal with polygon self
intersections which occurred in the first approach and therefore we do not need
as complex maintenance for merging. Another advantage is, that the number
of polygons we have to check for intersections with the polygon of the current
FOV is bounded. If a polygon is n pose graph points away from the current
pose graph point and does not intersect with the polygon of the current FOV,
then a polygon n + 1 pose graph points away will not intersect either. As we
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only work with relative transformations in the second approach, we do not rely
on computationally expensive pose graph optimization after loop closures.

As shown in the experiments we presented in Section 3.5, our novel representa-
tion used with a frontier-based exploration approach, such as the one proposed
in [4] leads to full coverage.

A disadvantage of the second approach is, that we do not get a global map im-
plicitly. Another limitation could be the memory usage when the robot explores
larger areas. As for every pose the polygon of the FOV is stored, this may lead
to an extensive memory usage.

4.3 Conclusion

In this thesis we proposed a novel representation for frontier based exploration.
In comparison with existing representation approaches, our representation can
deal with noisy state estimates and does not have to be rebuilt after a change
of the pose graph, e.g. after a loop closure. It is therefore more robust and
computationally more economical.

4.4 Future Work

In this thesis, we demonstrated the proposed approach in 2D. An implementa-
tion of the approach in 3D would be the next thing to do. In 3D, polygons will
be replaced by meshes and intersections of two meshes will be edges instead of
points.

As mentioned, one disadvantage of the second approach is, that we do not get
a global map implicitly. However, as we have the FOV of all the observations,
one could create a global map out of this observations and the poses of the pose
graph for example in post-processing. One possibility would be to create an
occupancy grid map by ray casting every FOV.

The proposed approach is also applicable for scenarios with multiple robots.
To realize such an extension to multiple agents, one has to determine what
information needs to be shared across the agents, how and when. A second
part of a multi robot extension that would need to be addressed is collaborative
(distributed) planing, also an active field of research.
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